Прикладное значение молекулярной биологии. Биохимия и молекулярная биология - где учиться? Введение

Молекулярный биолог – это исследователь в области медицины, миссия которого состоит, ни много ни мало, в спасении человечества от опасных болезней. Среди таких заболеваний, например, онкология, на сегодняшний день ставшая одной из главных причин смертности в мире, лишь немного уступая лидеру – сердечно-сосудистым заболеваниям. Новые методы ранней диагностики онкологии, предотвращения и лечения рака – приоритетная задача современной медицины. Молекулярные биологи в области онкологии разрабатывают антитела и рекомбинантные (генетически спроектированные) белки для ранней диагностики или целевой доставки лекарств в организме. Специалисты этой сферы используют самые современные достижения науки и техники для создания новых организмов и органических веществ с целью их дальнейшего использования в исследовательской и клинической деятельности. Среди методов, которые используют молекулярные биологи, – клонирование, трансфекция, инфекция, полимеразная цепная реакция, секвенирование генов и другие. Одна из компаний, заинтересованных в молекулярных биологах в России, – ООО «ПраймБиоМед». Организация занимается производством антител-реагентов для диагностики онкологических заболеваний. Такие антитела в основном используются для определения типа опухоли, ее происхождения и злокачественности, то есть способности к метастазированию (распространению в другие части организма). Антитела наносятся на тонкие срезы исследуемой ткани, после чего связываются в клетках с определенными белками – маркёрами, которые присутствуют в опухолевых клетках, но отсутствуют в здоровых и наоборот. В зависимости от результатов исследования назначается дальнейшее лечение. Среди клиентов «ПраймБиоМед» – не только медицинские, но и научные учреждения, так как антитела могут использоваться и для решения исследовательских задач. В таких случаях могут быть произведены уникальные антитела, способные связываться с исследуемым белком, под конкретную задачу по специальному заказу. Еще одно перспективное направление исследований компании – таргетная (целевая) доставка лекарств в организме. В данном случае антитела используются как транспорт: с их помощью лекарства доставляются непосредственно к пораженным органам. Таким образом, лечение становится более эффективным и имеет меньше негативных последствий для организма, чем, например, химиотерапия, которая поражает не только раковые, но и другие клетки. Профессия молекулярного биолога в ближайшие десятилетия, как ожидается, будет все более востребованной: с увеличением средней продолжительности жизни человека количество онкологических заболеваний будет увеличиваться. Ранняя диагностика опухолей и инновационные способы лечения с помощью полученных молекулярными биологами веществ позволят спасти жизнь и улучшить ее качество огромному количеству людей.

Основное профессиональное образование

Проценты отражают распределение специалистов с определенным уровнем образования на рынке труда. Ключевые специализации для освоения професии отмечены зеленым цветом.

Способности и навыки

  • Умение обращаться с реактивами, образцами, надо уметь работать с малыми объектами
  • Навыки работы с большим объемом информации
  • Умение работать руками

Интересы и предпочтения

  • Стремление узнавать что-то новое
  • Умение работать в режиме многозадачности (необходимо следить за ходом нескольких реакций и процессов одновременно)
  • Аккуратность
  • Ответственность (нельзя оставить работу «на завтра», так как образцы могут быть испорчены)
  • Скрупулёзность
  • Трудолюбие
  • Внимательность (необходимо следить за микропроцессами)

Профессия в лицах

Мария Шитова

Дарья Самойлова

Алексей Грачев

Молекулярная биология в области онкологии - перспективное профессиональное направление, так как борьба с раком - одна из приоритетных задач мировой медицины.

Специалисты-молекулярные биологи востребованы во многих областях в связи с активным развитием науки, биотехнологических и инновационных предприятий. На сегодняшний день наблюдается небольшой дефицит специалистов, особенно имеющих определенный опыт работы по специальности. До сих пор достаточно большое количество выпускников продолжает уезжать работать за границу. Сейчас начинают появляться возможности эффективной работы в области биотехнологии в России, но о массовости говорить пока рано.

Работа молекулярного биолога предполает активное участие специалиста в научной деятельности, которая становится механизмом карьерного продвижения. Развитие в профессии возможно через участие в научных проектах и конференциях, возможно через освоение смежных областей знания. Также в дальнейшем возможно академическое развитие от младшего научного сотрудника через старшего научного сотрудника к ведущему научному сотруднику, профессору и/или заведующему отделом/лабораторией.

Молекулярный биолог – это исследователь в области медицины, миссия которого состоит, ни много ни мало, в спасении человечества от опасных болезней. Среди таких заболеваний, например, онкология, на сегодняшний день ставшая одной из главных причин смертности в мире, лишь немного уступая лидеру – сердечно-сосудистым заболеваниям. Новые методы ранней диагностики онкологии, предотвращения и лечения рака – приоритетная задача современной медицины. Молекулярные биологи в области онкологии разрабатывают антитела и рекомбинантные (генетически спроектированные) белки для ранней диагностики или целевой доставки лекарств в организме. Специалисты этой сферы используют самые современные достижения науки и техники для создания новых организмов и органических веществ с целью их дальнейшего использования в исследовательской и клинической деятельности. Среди методов, которые используют молекулярные биологи, – клонирование, трансфекция, инфекция, полимеразная цепная реакция, секвенирование генов и другие. Одна из компаний, заинтересованных в молекулярных биологах в России, – ООО «ПраймБиоМед». Организация занимается производством антител-реагентов для диагностики онкологических заболеваний. Такие антитела в основном используются для определения типа опухоли, ее происхождения и злокачественности, то есть способности к метастазированию (распространению в другие части организма). Антитела наносятся на тонкие срезы исследуемой ткани, после чего связываются в клетках с определенными белками – маркёрами, которые присутствуют в опухолевых клетках, но отсутствуют в здоровых и наоборот. В зависимости от результатов исследования назначается дальнейшее лечение. Среди клиентов «ПраймБиоМед» – не только медицинские, но и научные учреждения, так как антитела могут использоваться и для решения исследовательских задач. В таких случаях могут быть произведены уникальные антитела, способные связываться с исследуемым белком, под конкретную задачу по специальному заказу. Еще одно перспективное направление исследований компании – таргетная (целевая) доставка лекарств в организме. В данном случае антитела используются как транспорт: с их помощью лекарства доставляются непосредственно к пораженным органам. Таким образом, лечение становится более эффективным и имеет меньше негативных последствий для организма, чем, например, химиотерапия, которая поражает не только раковые, но и другие клетки. Профессия молекулярного биолога в ближайшие десятилетия, как ожидается, будет все более востребованной: с увеличением средней продолжительности жизни человека количество онкологических заболеваний будет увеличиваться. Ранняя диагностика опухолей и инновационные способы лечения с помощью полученных молекулярными биологами веществ позволят спасти жизнь и улучшить ее качество огромному количеству людей.

Молекулярная биология / м ə л ɛ к J ʊ л ər / является ветвью биологии , что касается молекулярной основы биологической активности между биомолекул в различных системах клетки , в том числе взаимодействий между ДНК , РНК , белков и их биосинтеза , а также регулирование этих взаимодействий. Запись в природе в 1961 году, Астбери описал молекулярную биологию:

Не столько техника, как подход, подход с точки зрения так называемых фундаментальных наук с ведущей идеей поиска ниже крупномасштабных проявлений классической биологии для соответствующего молекулярного плана. Он обеспокоен тем, в частности, с формами биологических молекул и [...] преимущественно трехмерным и структурно - что не означает, однако, что это всего лишь уточнение морфологии. Он должен в то же время исследовать генезис и функции.

Отношение к другим биологическим наукам

Исследователи в области молекулярной биологии используют специфические методы произрастающих молекулярной биологии, но все больше и больше комбинировать их с методами и идеями от генетики и биохимии . Существует не определенная грань между этими дисциплинами. Это показано на следующей схеме, которая изображает один возможный вид отношений между полями:

  • Биохимия является изучение химических веществ и жизненно важных процессовпроисходящих в живых организмах . Биохимики тяжело сосредоточиться на роли, функции и структуры биомолекул . Изучение химии за биологических процессов и синтеза биологически активных молекулявляются примерами биохимии .
  • Генетика является изучение влияния генетических различий в организмах. Это часто может быть выведенотсутствии нормальной компоненты (напримеродин ген). Изучение « мутанты » - организмыкоторыеимеют один или более функциональные компоненты по отношению к так называемому « дикому типу » или нормальному фенотипу . Генетические взаимодействия ( эпистаз) часто путают простые интерпретации таких « нокаут » исследования.
  • Молекулярная биология является изучение молекулярных основ процессов репликации , транскрипции , трансляции и функции клеток. Центральная догма молекулярной биологии , где генетический материал транскрибируется в РНК и затем транслируется в белок , несмотрятоупрощенно,прежнему обеспечивает хорошую начальную точку для понимания поля. Картина была пересмотрена в свете возникающих новых ролей для РНК .

Методы молекулярной биологии

Молекулярное клонирование

Одним из самых основных методов молекулярной биологии для изучения функции белка является молекулярным клонированием . В этой технике, ДНК, кодирующий белок, представляющего интерес, клонированной с помощью полимеразной цепной реакции (ПЦР), и / или ферменты рестрикции в плазмиде (вектора экспрессии ,). Вектор имеет 3 отличительные особенности: начало репликации, а сайт множественного клонирования (MCS), и селективный маркер, как правило, с устойчивостью к антибиотикам . Расположенные выше сайт множественного клонирования являются промоторными областями и транскрипции сайта инициации, которые регулируют экспрессию клонированного гена. Эта плазмида может быть вставлена в либо бактериальные или животных клеток. Введение ДНК в бактериальные клетки может быть сделано путем трансформации с помощью поглощения голой ДНК, конъюгаций с помощью межклеточных контактов или путем трансдукции с помощью вирусного вектора. Введение ДНК в эукариотические клетки, такие как клетки животных, с помощью физических или химических средств, называется трансфекцией . Несколько различных методов трансфекции доступны, такие как фосфат кальция трансфекции, электропорации , микроинъекции и липосомальной трансфекции . Плазмида может быть интегрирована в геном , что приводит к стабильной трансфекции, или может оставаться независимыми от генома, называемого переходными процессы трансфекции.

ДНК, кодирующие белки, представляющего интереса, в настоящее время внутри клетки, и белки , теперь могут быть выражены. Разнообразные системы, такие как индуцибельные промоторы и специфических клеточных сигнальных факторов, которые помогут выразить интерес белок на высоких уровнях. Большие количества белка могут быть затем извлечены из бактериальной или эукариотической клетки. Белок может быть проверен на ферментативную активность при различных ситуациях, белка можно кристаллизовать поэтому его третичная структура может быть изучена, или, в фармацевтической промышленности, активность новых препаратов против белка может быть изучена.

Полимеразной цепной реакции

Макромолекулы-блоттинга и исследование

Термины северный , западный и восточный блоттинг получает из, что первоначально была молекулярная биология шутка, которая играла на термине Саузернет , после методики, описанной Edwin Southern для гибридизации BLOTTED ДНК. Патриция Томас, разработчик РНК - блоттинга, который затем стал известен как северному - блоттинга , на самом деле не использовать этот термин.

Саузернблоттинг

Названный в честь его изобретателя, биолог Эдвин Южный , то Саузерн - блот представляет собой метод для исследования на наличие специфической последовательности ДНК в образце ДНК. Образцы ДНК до или после фермента рестрикции (рестриктаз) перевариваний разделены с помощью электрофореза в геле, а затем переносили на мембрану с помощью блоттинга с помощью капиллярного действия . Мембрану затем подвергают воздействию меченого ДНК - зонда, который имеет последовательность оснований дополнением к последовательности на ДНК, представляющей интерес. Саузерн - блоттинг менее широко используется в научной лаборатории из - за способности других методов, таких как ПЦР , для обнаружения специфических последовательностей ДНК из образцов ДНК. Эти блоты все еще используются для некоторых применений, однако, таких как измерение трансгена числа копий в трансгенных мышах или в инженерии гена нокаутных линий эмбриональных стволовых клеток .

Северный блоттинга

Northern блот диаграмма

Восточно-блоттинга

Клинические исследования и медицинские методы лечения, вытекающие из молекулярной биологии, частично охвачены генной терапии . Применение молекулярной биологии или молекулярных клеточная биология подходов в медицине теперь называется молекулярной медициной . Молекулярная биология также играет важную роль в понимании образования, действий и нормативных актов различных частей клеток , которые могут быть использованы для эффективных предназначаться новые лекарства , болезнь диагноза и понять физиологию клетки.

дальнейшее чтение

  • Cohen, SN, Чанг, НКД, Бойер, H. & Heling, RB Конструирование биологически функциональных бактериальных плазмид в пробирке .

1. Введение.

Предмет, задачи и методы молекулярной биологии и генетики. Значение "классической" генетики и генетики микроорганизмов в становлении молекулярной биологии и генной инженерии. Понятие гена в "классической" и молекулярной генетике, его эволюция. Вклад методологии генной инженерии в развитие молекулярной генетики. Прикладное значение генной инженерии для биотехнологии.

2. Молекулярные основы наследственности.

Понятие о клетке, ее макромолекулярный состав. Природа генетического материала. История доказательства генетической функции ДНК.

2.1. Различные виды нуклеиновых кислот. Биологические функции нуклеиновых кислот. Химическое строение, пространственная структура и физические свойства нуклеиновых кислот. Особенности строения генетического материала про - и эукариот. Комплементарные пары оснований Уотсона-Крика. Генетический код. История расшифровки генетического кода. Основные свойства кода: триплетность, код без запятых, вырожденность. Особенности кодового словаря, семьи кодонов, смысловые и «бессмысленные» кодоны. Кольцевые молекулы ДНК и понятие о сверхспирализации ДНК. Топоизомеры ДНК и их типы. Механизмы действия топоизомераз. ДНК-гираза бактерий.

2.2. Транскрипция ДНК. РНК-полимераза прокариот, ее субъединичная и трехмерная структуры. Разнообразие сигма-факторов. Промотор генов прокариот, его структурные элементы. Стадии транскрипционного цикла. Инициация, образование “открытого комплекса”, элонгация и терминация транскрипции. Аттенюация транскрипции. Регуляция экспрессии триптофанового оперона. “Рибопереключатели”. Механизмы терминации транскрипции. Негативная и позитивная регуляция транскрипции. Лактозный оперон. Регуляция транскрипции в развитии фага лямбда. Принципы узнавания ДНК регуляторными белками (САР-белок и репрессор фага лямбда). Особенности транскрипции у эукариот. Процессинг РНК у эукариот. Кепирование, сплайсинг и полиаденилирование транскриптов. Механизмы сплайсинга. Роль малых ядерных РНК и белковых факторов. Альтернативный сплайсинг, примеры.

2.3. Трансляция , ее этапы, функция рибосом. Локализация рибосом в клетке. Прокариотический и эукариотический типы рибосом; 70S и 80S рибосомы. Морфология рибосом. Подразделение на субчастицы (субъединицы). Кодон-зависимое связывание аминоацил-тРНК в элонгационном цикле. Кодон-антикодоновое взаимодействие. Участие фактора элонгации EF1 (EF-Tu) в связывании аминоацил-тРНК с рибосомой. Фактор элонгации EF1В (EF-Ts), его функция, последовательность реакций с его участием. Антибиотики, воздействующие на этап кодон-зависимого связывания аминоацил-тРНК с рибосомой. Аминогликозидые антибиотики (стрептомицин, неомицин, канамицин, гентамицин и др.), механизм их действия. Тетрациклины как ингибиторы связывания аминоацил-тРНК с рибосомой. Инициация трансляции. Основные этапы процесса инициации. Инициация трансляции у прокариот: факторы инициации, инициаторные кодоны, 3¢-конец РНК малой рибосомной субчастицы и последовательность Шайна-Дальгарно в мРНК. Инициация трансляции у эукариот: факторы инициации, инициаторные кодоны, 5¢-нетранслируемая область и кэп-зависимая «концевая» инициация. «Внутренняя» кэп-независимая инициация у эукариот. Транспептидация. Ингибиторы транспептидации: хлорамфеникол, линкомицин, амицетин, стрептограмины, анизомицин. Транслокация. Участие фактора элонгации EF2 (EF-G) и ГТФ. Ингибиторы транслокации: фусидовая кислота, виомицин, их механизмы действия. Терминация трансляции. Терминирующие кодоны. Белковые факторы терминации прокариот и эукариот; два класса факторов терминации и механизмы их действия. Регуляция трансляции у прокариот.

2.4. Репликация ДНК и ее генетический контроль. Полимеразы, участвующие в репликации, характеристика их ферментативных активностей. Точность воспроизведения ДНК. Роль стерических взаимодействий между парами оснований ДНК при репликации. Полимеразы I, II и III E. coli. Субъединицы полимеразы III. Вилка репликации, “ведущая” и “отстающая” нити при репликации. Фрагменты Оказаки. Комплекс белков в репликационной вилке. Регуляция инициации репликации у E. соli. Терминация репликации у бактерий. Особенности регуляции репликации плазмид. Двунаправленная репликация и репликация по типу катящегося кольца.

2.5. Рекомбинация , ее типы и модели. Общая или гомологичная рекомбинация. Двухнитевые разрывы ДНК, инициирующие рекомбинацию. Роль рекомбинации в пострепликативной репарации двухнитевых разрывов. Структура Холлидея в модели рекомбинации. Энзимология общей рекомбинации у E. coli. RecBCD комплекс. RecA белок. Роль pекомбинации в обеспечении синтеза ДНК при повреждениях ДНК, прерывающих репликацию. Рекомбинация у эукариот. Ферменты рекомбинации у эукариот. Сайт-специфичная рекомбинация. Различия молекулярных механизмов общей и сайт-специфичной рекомбинации. Классификация рекомбиназ. Типы хромосомных перестроек, осуществляемых при сайт-специфичной рекомбинации. Регуляторная роль сайт-специфичной рекомбинации у бактерий. Конструирование хромосом многоклеточных эукариот с помощью системы сайт-специфичной рекомбинации фага.

2.6. Репарация ДНК. Классификация типов репарации. Прямая репарация тиминовых димеров и метилированного гуанина. Вырезание оснований. Гликозилазы. Механизм репарации неспаренных нуклеотидов (mismatch репарация). Выбор репарируемой нити ДНК. SOS-репарация. Свойства ДНК полимераз, участвующих в SOS-репарации у прокариот и эукариот. Представление об “адаптивных мутациях” у бактерий. Репарация двухнитевых разрывов: гомологичная пострепликативная рекомбинация и объединение негомологичных концов молекулы ДНК. Взаимосвязь процессов репликации, рекомбинации и репарации.

3. Мутационный процесс.

Роль биохимических мутантов в формировании теории один ген – один фермент. Классификация мутаций. Точковые мутации и хромосомные перестройки, механизм их образования. Спонтанный и индуцированный мутагенез. Классификация мутагенов. Молекулярный механизм мутагенеза. Взаимосвязь мутагенеза и репарации. Идентификация и селекция мутантов. Супрессия: внутригенная, межгенная и фенотипическая.

4. Внехромосомные генетические элементы.

Плазмиды, их строение и классификация. Половой фактор F, его строение и жизненный цикл. Роль фактора F в мобилизации хромосомного переноса. Образование доноров типа Hfr и F". Механизм конъюгации. Бактериофаги, их структура и жизненный цикл. Вирулентные и умеренные бактериофаги. Лизогения и трансдукция. Общая и специфическая трансдукция. Мигрирующие генетические элементы: транспозоны и IS-последовательности, их роль в генетическом обмене. ДНК-транспозоны в геномах прокариот и эукариот. IS-последовательности бактерий, их структура. IS-последовательности как компонент F-фактора бактерий, определяющего способность передачи генетического материала при конъюгации. Транспозоны бактерий и эукариотических организмов. Прямой нерепликативный и репликативный механизмы транспозиций. Представление о горизонтальном переносе транспозонов и их роли в структурных перерстройках (эктопическая рекомбинация) и в эволюции генома.

5. Исследование структуры и функции гена.

Элементы генетического анализа. Цис-транс комплементационный тест. Генетическое картирование с использованием конъюгации, трансдукции и трансформации. Построение генетических карт. Тонкое генетическое картирование. Физический анализ структуры гена. Гетеродуплексный анализ. Рестрикционный анализ. Методы секвенирования. Полимеразная цепная реакция. Выявление функции гена.

6. Регуляция экспрессии генов. Концепции оперона и регулона. Контроль на уровне инициации транскрипции. Промотор, оператор и регуляторные белки. Позитивный и негативный контроль экспрессии генов. Контроль на уровне терминации транскрипции. Катаболит-контролируемые опероны: модели лактозного, галактозного, арабинозного и мальтозного оперонов. Аттенюатор-контролируемые опероны: модель триптофанового оперона. Мультивалентная регуляция экспрессии генов. Глобальные системы регуляции. Регуляторный ответ на стрессы. Посттранскрипционный контроль. Сигальная трансдукция. Регуляция с участием РНК: малые РНК, сенсорные РНК.

7. Основы генной инженерии. Ферменты рестрикции и модификации. Выделение и клонирование генов. Векторы для молекулярного клонирования. Принципы конструирования рекомбинантных ДНК и их введения в реципиентные клетки. Прикладные аспекты генной инженерии.

а). Основная литература:

1. Уотсон Дж., Туз Дж., Рекомбинантные ДНК: Краткий курс. – М.: Мир, 1986.

2. Гены. – М.: Мир. 1987.

3. Молекулярная биология: структура и биосинтез нуклеиновых кислот. / Под ред. . – М. Высшая шк. 1990.

4. , – Молекулярная биотехнология. М. 2002.

5. Спирин рибосомы и биосинтез белка. – М.: Высшая школа, 1986.

б). Дополнительная литература:

1. Хесин генома. – М.: Наука. 1984.

2. Рыбчин генетической инженерии. – СПб.: СПбГТУ. 1999.

3. Патрушев генов. – М.: Наука, 2000.

4. Современная микробиология. Прокариоты (в 2-х тт.). – М.: Мир, 2005.

5. М. Сингер, П. Берг. Гены и геномы. – М.: Мир, 1998.

6. Щелкунов инженерия. – Новосибирск: Из-во Сиб. Унив., 2004.

7. Степанов биология. Структура и функции белков. – М.: В. Ш., 1996.

Молекулярная биология пережила период бурного развития собственных методов исследования, которыми теперь отличается от биохимии. К ним, в частности, относятся методы генной инженерии , клонирования , искусственной экспрессии и нокаута генов . Поскольку ДНК является материальным носителем генетической информации, молекулярная биология значительно сблизилась с генетикой , и на стыке образовалась молекулярная генетика , являющаяся одновременно разделом генетики и молекулярной биологии. Так же, как молекулярная биология широко применяет вирусы как инструмент исследования, в вирусологии для решения своих задач используют методы молекулярной биологии. Для анализа генетической информации привлекается вычислительная техника, в связи с чем появились новые направления молекулярной генетики, которые иногда считают особыми дисциплинами: биоинформатика , геномика и протеомика .

История развития

Это основополагающее открытие было подготовлено длительным этапом исследований генетики и биохимии вирусов и бактерий .

В 1928 году Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок , а нуклеиновая кислота . Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма.

В 50-х годах XX века было показано, что у бактерий существует примитивный половой процесс, они способны обмениваться внехромосомной ДНК, плазмидами . Открытие плазмид, как и трансформации , легло в основу распространённой в молекулярной биологии плазмидной технологии . Ещё одним важным для методологии открытием стало обнаружение в начале XX века вирусов бактерий, бактериофагов . Фаги тоже могут переносить генетический материал из одной бактериальной клетки в другую. Заражение бактерий фагами приводит к изменению состава бактериальной РНК . Если без фагов состав РНК сходен с составом ДНК бактерии, то после заражения РНК становится больше похожа на ДНК бактериофага. Тем самым было установлено, что структура РНК определяется структурой ДНК. В свою очередь, скорость синтеза белка в клетках зависит от количества РНК-белковых комплексов. Так была сформулирована центральная догма молекулярной биологии : ДНК ↔ РНК → белок.

Дальнейшее развитие молекулярной биологии сопровождалось как развитием её методологии, в частности, изобретением метода определения нуклеотидной последовательности ДНК (У. Гилберт и Ф. Сенгер , Нобелевская премия по химии 1980 года), так и новыми открытиями в области исследований строения и функционирования генов (см. История генетики). К началу XXI века были получены данные о первичной структуре всей ДНК человека и целого ряда других организмов, наиболее важных для медицины, сельского хозяйства и научных исследований, что привело к возникновению нескольких новых направлений в биологии: геномики, биоинформатики и др.

См. также

  • Молекулярная биология (журнал)
  • Транскриптомика
  • Молекулярная палеонтология
  • EMBO - Европейская организация молекулярных биологов

Литература

  • Сингер М., Берг П. Гены и геномы. - Москва, 1998.
  • Стент Г., Кэлиндар Р. Молекулярная генетика. - Москва, 1981.
  • Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. - 1989.
  • Патрушев Л. И. Экспрессия генов. - М.: Наука, 2000. - 000 с., ил. ISBN 5-02-001890-2

Ссылки


Wikimedia Foundation . 2010 .

  • Ардатовский район Нижегородской области
  • Арзамасский район Нижегородской области

Смотреть что такое "Молекулярная биология" в других словарях:

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… … Биологический энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены … Большой Энциклопедический словарь

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ Современная энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, биологическое изучение строения и функционирования МОЛЕКУЛ, из которых состоят живые организмы. К основным сферам изучения относятся физические и химические свойства белков и НУКЛЕИНОВЫХ КИСЛОТ, таких как ДНК. см. также… … Научно-технический энциклопедический словарь

    молекулярная биология - раздел биол., который исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Словарь микробиологии

    молекулярная биология - — Тематики биотехнологии EN molecular biology … Справочник технического переводчика

    Молекулярная биология - МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… … Иллюстрированный энциклопедический словарь

    Молекулярная биология - наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом… … Большая советская энциклопедия

    МОЛЕКУЛЯРНАЯ БИОЛОГИЯ - изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель М. б. установление роли и механизма функционирования этих макромолекул на основе… … Химическая энциклопедия

    молекулярная биология - исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления… … Энциклопедический словарь

Книги

  • Молекулярная биология клетки. Сборник задач , Дж. Уилсон, Т. Хант. Книга американских авторов - приложение ко 2 - му изданию учебника `Молекулярная биология клетки` Б. Албертса, Д. Брея, Дж. Льюиса и др. Содержит вопросы и задачи, цель которых - углубить…